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ABSTRACT
A model for the interface of two interacting one component
plasmas of different background densities separated by an impermeable
surface, is solved exactly in two dimensions at one special temperature.
This model emulates the behﬁviour of an ideally polarizable interface.
We obtain density profiles,differential capacity and surface tension as

a function of the applied potential.Pertinent sum rules are given.
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I INTRODUCTION

A model for a charged interface has been proposed recently [1,2]
in which two media described by classical, one component plasmas (OCP) of
different background densities are separated by a charged gap. Although this
model is far from ; realistic description of the metal-electrolyte interface,
it has the intéresting feature that an exact solution can be found in two
dimensions for the special reduced température of 2,using the method of
Jancovici and coworkers [3].0n the other hand, as shown
in [1l) ,it appears that this model does not allow any change of
the potential drop across the interface with the surface charge,and in this

sense emulates the behaviour of a non-polarizable interface.

This is a result of the fact that charged particles can move freely across

the interface,which,because of perfect screening,is probably connected to the

non-existence of long range correlations along the interface {1,2].

In the present note we consider another physically interesting situation

corresponding to the polarizable interface, such as the ' i

classical example of the mercury-agueous electrolyte solution interface.

For that purnose,we assume that between the two media there is an impermeable
surface which prevents the ions from crossing the interface while allowing
electrical interactions between all particles.Clearly, this model is consistent

with the concept of the ideally polarizable electrode (4] .A full description 4

of the technical details of our solution will be given in a forthcoming

raper.Here we give only a summary of our main results.
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II- PARTITION FUNCTION: METHOD OF SOLUTION

Our system consists of two concentric circles of radii R, and Ry
The inner region (0<rz<R,) has background charge density -eog/n._ Where
e is the elementary charge,and contains Nﬂ partic' les of charge e

Wwe want to allow for an excess charge density -eca"/“c along the wall
then we must have

Nz R -26R, (1)

The outer region (R“(z(Rz) has background density -eo{z/n._ ,excess

charge density ec'/m and contains N, partic:'les of charge e.Hence

e T A2
N, &, Ry=R\ + 20-R,
The plasma coupling parameter is
M= {Se" =2

where [5=l/k‘l‘ is the thermal Boltzmann fa}ctor and T is the tempgrature

(2)

The potential energy of the system is

N
V = V‘, + E'.e" {-Z fu I.\":-?'; [" + &

i>j

N,

Ky L f L ol
- (\':-“Rf\ + d?. (Y; "Rq\
) t=! (= N+t
N . '
+ (&‘-ul\ﬂ"' 2 ‘fn,(}\ } (3)
1z Nt Rs
where V_, is a constant background term and N=N +N,

.Note that the charge
density e¢ does not appear explicitly.

Following the method introduced by Jancovici [3] ,the canonical partition
function can be written

? = A Jr"g"PV

M N, N!

w

R, 2"‘; O A A i 5%, 2\
:e.PV"(Zm\“_ /J.-"’ P R /G‘Pm o Ti (%)
N' % R,
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where .5 is the permutation operator between the N particles.
Since the ions are not allowed to cross the inner circle,it willl-. be
useful to introduce a factor z which , as we will see later

fixes the ratio of the activities on both sides of the interface.

ZN N can then be'written as a contour integral
(Y

N-l
AV N
e 0N L f/ 2o ol
i L3 4 azo Z0
where
. Ry .
‘PQ‘\= :M‘ \‘(“"‘z“tﬁl)
1
N " | 2 2
pere 25 Lt - vl
2 |
'f with Pz D+ (e(z-cg\'R:

/*
and XQ\H,R" \ = / e."L un' du.
[ 4

is the incomplete gamma function.It is convenient to write (5) in the form

A
N
(§ )

)

N, N, N T S (6)
With "' “
O~
o j dz -1 -4
- = e 2 L XNz +1] [ XY z « l]
where =t 02 Nt

i and 2" are the partition functions for the uncoupled inner and outer
[

2
regions, and are introduced to insure proper convergence of the integrals

below.




Cefine

N, N
Y(z) = z____ '(nfj((n\z"o- l] + Z rr\- [Xey z +1]
LY ¥ NN+t (N

In the limit R ,R, -> oo,the interface becomes a straight line, and we get

21
o
(2\'9 R‘\E_‘ ‘,{,‘_ t*ﬂ*‘\ d £, z + X&) dE
Y AN /«[ 14 ]

¢'54 (8)

where Lt \, 3
e = erfe (mé)
J((.\ m & E;Ei];t\

and h = d‘l/‘ 4
Y ]
In this limit 53, can be evaluated asymptotically by the method of steepest

descents ,choosing a contour z=z.exp(i6). We find

— o Y&

— ~

A LA (9

where 2z is the position of the saddle point in the complex z.plane,

2, is real and is computed from

o Rt N

_ QA b = / % d+
?FA. AKEY + z ‘“'ﬁ/.\‘ X(-E} +2, (10)

For m=l we have
260) = 7,0
so that Z, (a0 4

In the general case, (10) must be sclved numerically.

III-DENSITY PROFILE

The density ‘P(r) can be obtained by the same method.After some

manipulations we get
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Y@\
.
N ALY fer L fde s
P p— E Zn: n lsTt z + X for r<®, (ll)
where
' . -\("‘-ﬂ?\ in
L0 S T

and ' )

ye\
As L b . d X@Y
PN = Z f“zm )g z e

Py z+ J((n\ for r>E§1 (12)
f‘ : ’uz(r‘a \ r!!\t
where nﬂ("\ = oy 'Rl‘("a.‘“)

In the limit R R R" ->00 and taking the origin of coordinates at the wall

400 - (£-+)<\E=T,’\z
o < — dé X <o
T Ya 200 Z.Grfc(-ﬁ‘) + m & g (mﬂ
f(ﬂ s
‘0O

_(mt » X GL):
" / e(e-’-x.u\

% Z e "\&"fccmt’\ + z, e(l-m“)ez

(x=r-R ) ,we get

d&
erfe (—4‘)

(13)

ol
The integrals in (13) can be computed numer ically.The results for one typical

case are shown in Figure 1. For m=1 the contact densities have the
simple expressions

= - ¥ |
LOY = 3 ) =2 ';:.T& % (14)

Unlike the case of the permeable [1,2] interface,the density has now

2 jump at the interface.Wotice also that for zero charge and m=1, the

density remains constant everywhere.




IV-POTENTIAL DFOP AND DIFFERENTIAL CAPACITY
The total potential drop across the interface Ad = ¢p(w) -4—"6“\ can be
Calculated by integration of the density profile. dowever, this is not
necessary, since bcp is directly connected to z_ which is the ratio
of the activities.Indeed we have
2 = éﬁf/‘.‘/‘;*eﬁ‘#] = m e--,‘tv:b/e

° (15)
where s ang J*, are the chemical potentials on each side.In fact
it appears that O¢ is the true external variable controlling the
State of the system.This is a very nice feature of this model,
because this is actually what happens in the electrochemical measurements
where the potential is externally fixed.For a given /.Sk{), Z, is obtaine3d

from (13), and -t;tie charge density from (10) .Alternatively,using the

electroneutrality condition,we have a simpler way of calculating e¢

3 )
w“ o .. - - _ - ¥d
X = __é[f(x\ .;L.'z'_\J.x = ;/” fpee) - % Jdx
'Lé?. T t
- 05 _/:a‘ by R _efed - T efle g
o — Q(~ —p
tat L
e Zo me" erfe(mb) + 2, erfel-t)et
. (18)
€g.(16) can be shown to be completely equivalent to (10).
The differential capacity Ca= M is now obtained in closeqd
form from (1s) ’D(A(,b)
4%3
Clg)= 2w, [ 2O 4
. T = [z ¢+ XEY]* (17

A typical curve showing the dependence of C with potential is shown

in Pigure 2.

For mel, ( (b\f’ =°X =7-"3\F%




V-THERMODYNAMICS AND SUM RULES

From (6) and (8) the surface excess Helmholtz free energy

can be calculated. We get

Foo f o tm A AE

Qfa>ca{3!m?§

& 03
- 5. & V&, 2, + X(\ dF o [ 2.+XA
CmER L e n] o ] +¥@‘ gt ]

where f: is the surface excess free energy of the uncoupled systenm

Differentiating with respect to the surface charge density,we ind

the first sum rule

24 '
'%ﬁz Perfta + e b9 (19)

It may be shown that this equation is equivalent to the statement

that our model satisfies Lippmann’s eguation

((:L‘{ =-e %
fbﬁgk t&,T‘ ' (20)

where \( is the surface tension defined by

¢ = (?_f.\
A -z..,“r“,\l,Q (21)
where Q=e0A is the surface charge. -

A similar result holds for the case of a OCP near a charged oplane [5,5].

Figure 3 shows the dependence of the surface tension with potential

(electrocapillarity curve).

Another sum rule can be derived by thermodynamic arguments:

=T 24T 26 - 2] + 0% [ o) Pee)] - @2t [P0~ pr o]

(22)

where P, and Pz are the bulk thermal pressures on each side of the




interface.Notice that this contact theocrem differs from that oﬁ the permeable
interface case [7]).Equation (22) is indeed satisfied by our microscoric
exoressions.

Additional sum rules and a more comprehensive discussion

of this model will be given in future work.
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FIGURE CAPTIONS
Figure 1 Density profile.m=0.5 and O=-1l.Units are e= &4 =],
Figure 2 Capacity as a function of the applied potential.m=0.5.

FPigure 3 Electrocapillarity curve. m=0.5
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